Главная | Регистрация | Вход
...
Меню сайта
Форма входа
Категории раздела
СРОЧНО ! ВАЖНО ! [0]
ДОСТОЙНО ВНИМАНИЯ [0]
ЭТО ИНТЕРЕСНО МНЕ, МОЖЕТ И ВАМ? [0]
Поиск
Календарь
«  Ноябрь 2017  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
27282930
Наш опрос
ХОТИТЕ ЛИ ВЫ ЖИТЬ В ЕДИНОЙ СТРАНЕ?
Всего ответов: 94
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    статистика посещений сайта
    1


    Цвет,
    управление цветом,
    цветовые расчеты и измерения, ПРОД1


    Однако, несмотря на существующие разнообразие различных источников света большинство используемых в промышленности и технологии источников света могут быть стандартизированы. Такая стандартизация была предложена Международной комиссией по освещению (МКО), в соответствии с которой было выделено несколько так называемых стандартных колориметрических излучателей, которые были обозначены латинскими буквами A, B, C, D, E и F (табл. 1.7). В отличие от реальных источников света стандартные излучатели МКО описывают классы источников света в целом, основываясь на усредненных значениях их спектральных распределений. Подобная стандартизация показала свою достаточную эффективность, поскольку, как оказывается, несмотря на имеющиеся различия большинство реальных источников света могут быть довольно точно сопоставлены с соответствующими стандартными излучателями.

    Табл. 1.7.
    Стандартные колориметрические излучатели МКО
    AПод этим источником МКО обозначила полный световой излучатель (идеальное черное тело) при температуре 2856К. Для его воспроизведения используется лампа накаливания с вольфрамовой нитью с коррелированной цветовой температурой 2856К, а для более точного воспроизведения всего спектра источника А рекомендуется использовать лапы с колбой из плавленого кварца
    B,CВоспроизводят дневной солнечный свет: B — прямой солнечный свет с коррелированной цветовой температурой 4870К, C — непрямой солнечный свет с коррелированной цветовой температурой 6770К. При расчете этих излучателей были допущен целый ряд неточностей и потому в колориметрических расчетах они практически не используются, заменяясь стандартным излучателем D. По этой причине в спецификации стандартных излучателей МКО они часто вообще не указываются
    DЯвляется стандартным источником света, под который калибруется большинство имиджингового оборудования. Воспроизводит различные фазы среднедневного света в диапазоне коррелированных цветовых температур от 4000К до 7500К. Данные спектрального распределения излучения D были определены путем усреднения данных многочисленных измерений спектра дневного света выполненных в различных районах Великобритании, Канады и США. Для различных целей было определено несколько спектральных распределений источника D для различных значений цветовой температуры: D50, D55, D60, D65, D70, D75 с коррелированными цветовыми температурами соответственно 5000K, 5500K, 6000K, 6500K, 7000K, 7500K, соответствующим определенным фазам дневного света. Источник D65 следует считать наиболее универсальным, поскольку он наиболее точно аппроксимирует среднедневной свет. Источник D50 принят в качестве стандартного в полиграфии, поскольку лучше всего подходит для характеристики изображения, напечатанного стандартными типографскими красками на бумаге. Источник D55 принят в качестве стандартного в фотографии: именно лампы с цветовой температурой 5500К используются в просмотровом оборудовании для слайдов и эту цветовую температуру имеет свет лампы-вспышки. В отличие от других стандартных источников, в точности воспроизвести стандартные источники D довольно сложно, поскольку искусственных источников света с таким спектральным распределением излучения не существует. В качестве наиболее употребимых решений, удовлетворяющих потребителя как качественно, так и экономически, можно назвать использование люминесцентных ламп с соответствующей коррелированной цветовой температурой, спектр излучения которых дополнительно откорректирован с помощью специальных светофильтров
    EГипотетический источник излучения имеющий равноэнергетический (не меняющийся с изменением длины волны) спектр с цветовой температурой 5460К. Реально не существует в природе и используется в колориметрии в только расчетных целях
    FСтандартный излучатель, описывающий спектральное распределение излучения различных люминесцентных ламп. F1 — излучение теплой люминесцентной лампы с коррелированной цветовой температурой 3000К, F2 — люминесцентной лампы холодного дневного света с коррелированной цветовой температурой 4230К, F7 — люминесцентной лампы дневного света с коррелированной цветовой температурой 6500К





    Наряду с цветовой температурой иногда используется ее обратная величина, именуемая миред (обозначается μrd) либо обратный микрокельвин.

    Использование μrd вместо шкалы Кельвина имеет два преимущества: во-первых одна единица μrd примерно соответствует заметному на глаз единичному порогу изменения цветности светового потока и потому характеризовать цветность излучения в этих единицах удобнее; во-вторых μrd удобно использовать для характеристики цветных конверсионных и цветобалансирующих светофильтров: изменение цветовой температуры, обеспечиваемое фильтром, выраженное в μrd не изменится при работе с излучением с одной цветовой температуры к другому

    К примеру, оранжевый конверсионный фильтр 85-й серии понижает цветовую температуру среднедневного цвета с 5500K до 3400K на 2100К (112 μrd). Однако если его использовать для понижения цветовой температуры светового потока с цветовой температурой 4000K, изменение цветовой температуры выраженное в К будет не 2100K, а 7246K, а выраженное в μrd не измениться.

    Сложение цветов. Получение нового цвета путем смешивания нескольких основных цветов определяет возможность получения цветного изображения в фотографии, кино, телевидении, полиграфии и компьютерной технологии. Оно основано на явлении смешения спектров излучения, образованных окрашенными поверхностями либо световыми излучателями. В результате получается новый цвет, имеющий свой собственный спектр (рис. 1.13).

    Если, к примеру, взять три световых излучателя снабженных красным, зеленым и синим светофильтрами и спроецировать их излучения в одной точке на белом экране, то мы получим белое пятно. Если один из излучателей выключить и смешивать только излучение красного излучателя с зеленым, синего с зеленым и зеленого с красным то на экране мы получим вначале желтый, затем пурпурный и затем голубой цвет. Если же взять все три излучателя и смешивать их излучения в разной пропорции то мы сможем таким образом получить довольно большое число цветов и их оттенков. Чем меньше будет различие интенсивности трех излучателей, тем меньшей будет насыщенность цвета и тем более он будет стремиться к нейтральному. Если не изменяя пропорции трех излучений уменьшить их интенсивность, то мы получим тот же самый цвет но имеющий меньшую яркость. В предельном случае, когда интенсивность всех трех излучателей уменьшена до нуля, мы получим черный цвет. 

    Для случая, когда берутся только два основных цвета:

    На самом деле вместо красного, зеленого и синего мы могли бы взять какие угодно цвета, но просто путем смешения красного, зеленого и синего можно получить наибольшую комбинацию цветов. Очевидным объяснением этого факта являются особенности человеческого зрения и наличие в зрительном аппарате человека трех цветоощущающих рецепторов, каждый из которых является чувствительным к красным, зеленым и синим лучам. Таким образом, образование цвета с помощью трех излучателей синего, зеленого и красного цветов можно рассматривать как направленное возбуждение трех цветовых рецепторов глаза, в результате чего получается возможность вызывать у зрителя ощущение того или иного цвета.

    По подобной схеме происходит образование цветного изображения на экране видео- и компьютерного монитора, телевизора, ЖКИ-проектора и в других устройствах, которые для синтеза цвета используют излучения трех основных цветов либо (для устройств ввода изображения) разлагают изображение на основные цвета.

    Поскольку для получения цвета излучения трех основных цветовсмешиваются (складываются), этот способ цветосинтеза получил наименование аддитивного (от глагола add — складывать).



    Рис. 1.13. Аддитивное смешение цветов

    Рисунок иллюстрирует получение аддитивной цветовой смеси на примере цветного монитора Sony Trinitron. Излучения от трех люминофоров красного (R), зеленого (G) и синего цветов (B), спектральные излучения которых показаны на рисунке, суммируются для каждой длины волны, что позволяет получить цветовую смесь, воспроизводящую в зависимости от интенсивности свечения каждого люминофора большое число различных цветов и их оттенков. Обратите внимание, что свечение красного люминофора имеет практически линейчатый спектр, что обусловлено присутствием в его составе редкоземельных элементов

    В большинстве случаев, однако, складывать световые потоки трех излучателей для образования цвета не представляется технологически возможным, например, в кино, фотографии, полиграфии, текстильной и лакокрасочной промышленности.

    В фотографии световой поток белого света проходит через три красочных слоя фотоматериала, сформированных желтым, пурпурным и голубым красителем. В полиграфии световой поток проходит через слой желтой, пурпурной и голубой краски и отражаясь от поверхности бумаги проходит в обратном направлении, формируя цветное изображение.

    В результате прохождения светового потока белого света через слой красителя либо пигмента происходит избирательное поглощение части энергии спектра излучения, в результате чего световой поток приобретает ту или иную окраску.

    Таким образом получается возможным используя в качестве модулятора цветового излучения желтый, пурпурный и голубой красители, освещаемые световым потоком белого света, получать все те же потоки красного, зеленого и синего излучений, с помощью которых можно управлять возбуждением трех цветоощущающих центров глаза.




    Рис. 1.14. Субтрактивное смешение цветов

    Рисунок иллюстрирует получение субтрактивной цветовой смеси на примере цветной обращаемой фотопленки путем последовательного поглощения голубым (C), пурпурным (M) и желтым (Y) красителями с плотностями C = 100%, M = 60%, Y = 20% излучения от светового источника дневного света (D65) в каждом интервале длин волн. Получаемый в результате их смешения цвет является одним из оттенков синего. Излучение, полученное в результате частичного поглощения светового потока субтрактивными красителями, может в этом случае рассматриваться как произведение спектра излучения источника света и спектров отражения красителей

    В печати и полиграфии к трем желтой, пурпурной и голубой краскам еще добавляется черная. Это продиктовано, во первых, экономическими соображениями, поскольку позволяет уменьшить расход более дорогих цветных красок, а во вторых, позволяет решить некоторые принципиальные проблемы, возникающие в процессе трехцветной типографской печати в следствие несовершенства используемых печатных красок, спектр отражения которых на практике не ограничивается только желтым, только пурпурным и только голубым.

    Поскольку для получения цвета световые потоки не складываются, а световой поток белого света частично поглощается в результате взаимодействия с красителем, такой способ цветосинтеза получил наименование субтрактивного (от глагола subtract — вычитать).


    Источник : nordicdreams.net.ru

    2